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ABSTRACT 

According to ErdSs and Straus, we define an admissible subset .~ of [I, A/~ 

to be such that whenever an integer can be written as a sum of s distinct 

elements from ~, then s is well defined. Improving on previous results, 

we show that the cardinality of such an admissible subset ~4 is at most 

(2 q- o(1))x/N. As shown by Straus, the constant 2 cannot be improved 

upon. 

P. Erd6s [1] initiated in 1962 the study of finite sets ,4 of integers, having the 

property that each time an integer can be written as a sum of a certain number of 

distinct elements from ,4, it cannot be written as a sum of distinct elements from 

,4 with a different number of summands. Such sets have been called admis s ib l e  

by E. G. Straus in [5]. 

If we denote by h^A the set of integers which can be represented as a sum of 

h distinct elements from A, the admissibility of A is equivalent to saying that 

8AA VI $^,A = 0 for all  s r t. 
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Erd6s proved that an admissible set included in [1, N] has cardinality O (N 5/6) 

and suggested that in this case [,4[ is indeed maximal when ,4 consists of 

consecutive integers at the upper end of the interval [1, N]. 

Straws proved that for an admissible set ,4 in [1, N], one has [,4] _< 

(4/v/3 + o(1)x/~, and that there exists ,4 admissible in [1,N] with 1,4[ = 

[ 2 v ~ -  lJ. 

The constant 4/v/3 = 2.309... has been recently reduced by P. Erd6s, 

J. L. Nicolas and A. Sarkbzy [2]. The primary aim of this paper is to reduce 

it to 2, which is best possible, as shown by Straws' example. 

THEOREM 1 : There exists a constant C such that any admissible set ,4 included 

in [1, N] satisfies 
card ,4 <_ 2N 1/2 + C N  5/12. 

An interesting question is the determination of the structure of large admissible 

sets. The following result is a first step in this direction; its strength can be seen 

from the fact that Theorem 1 is an easy consequence of it. This result is however 

far from being stated in its strongest shape, and we shall come back later to that 

topic. 

THEOREM 2: Let ,4 be an admissible set included in [1, N], such that card,4 > 

1.96v/N. I f  N is large enough, there exists C C ,4 having the following properties: 

(i) cardC _< 105N 5/12, 

(ii) for some t, the set tAC contains an arithmetic progression with at least 

3N 5/6 terms, and difference d, say, 

(iii) ,4 \ C is included in an arithmetic progression with difference d, and 

containing at most N 7/12 terms. 

It will be clear from the proof that a similar result may be obtained when 1.96 

is replaced by any number larger than 4 X / ~  -- 1.8856 . . . .  

The key point in the proof of Theorem 2 is the following inverse additive result, 

which is a consequence of the structural result of the second author (cf. [3]). 

THEOREM 3: Let A < 6 and B be a finite set of integers such that card(4AB) _< 

A card B. There exist real numbers CI(A) and C2(A) such that [(C1 card 6)ABJ 

contains an arithmetic progression with at least C2(,k)(card B) 2 terms. 

In the remaining part of the paper, N denotes a sufficiently large integer, and ,4 

an admissible subset of [1, N], for which 1.96vfN _< card,4 <_ 2.31v/N. Because 
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of Straus' result, the upper bound is valid for any admissible set. 
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1. T h e r e  exis ts  some  s for which  s^.A is smal l  

PROPOSITION 1: There exists an integer s belonging to [1.4[/10, 31.41/4 ] such 

that Is^AI < 1.44s(I.al- s). 

Proof: We assume that [s^.A[ is at least 1.44s([.A[ - s) for every s in the interval 

Z := [[,4[/10, 3[.A[/4]. Since ,4 is admissible, the sets sac{ are pairwise disjoint 

for s in 2:, and all those sets are included in [1, 0.751A[N ]. We thus have: 

0.75lAIN > ~ [sAAI _> 1.44 E ( s l A [  -- s 2) 
sEZ sEZ 

> _ 1 . 4 4 ( ~  ( ( ~ ) 2  ( ~ 0 [ ) 2 ) _ ~  ( ( y ) 3 _  ( ~ 0 [ ) 3 ) ) + O ( [ A I  2) 

> 0.195781A[ 3 + 0 ([AI2), 

and this implies that A is at most 1.958N 1/2 when N is large enough, a 

contradiction which proves Proposition 1. | 

2. T h e  set  A con ta ins  a subse t  B such  t h a t  [4AB[ is smal l  

PROPOSITION 2: Let L be any integer between 1 and ]A]/2000. There exists 

B C ,4 with [B[ = L such that I4^BI is less than 5.81B [. 

Proo~ We consider an integer s satisfying Proposition 1, and write .4 = 

{al < " "  < el^I}. For 0 < l < (I.41 - s -  4)/4,  let 

Cl :~- {a4/+l, a41+2, �9 �9 �9 a41+s+4}. 
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For m < l, the sets sACra and sAC~ are disjoint, except when l = m + 1, in 

which case they have only one element in common, namely a41+1 + " "  + a4l+8, 

so that we have 

Is^.41 _> ~ ls^e~l - (IAI - s ) / 4 .  
l 

By considering the map which associates to any subset of 4 distinct elements 

from Ol its complement in C~, we readily see that 14^c,I = Is^c~l, so that  we have 

Is^~tl _> ~ 14^C,[ - ( [ A I -  s)/4. 
l 

By Proposition 1, we have [sA.A[ < 1.44s([.A[- s), and so for some l we have 

[4Act[ < 5.77S if N is large enough. 
/8+41 We let M := L L , ,  SO that  M > 200, and break Cl into M + 1 consecutive 

blocks of integers Bx , . . . ,BM+I  where IBm[ = L, for 1 < m < M. We clearly 

have 

4^B1 U . . .  u4ABM C 4^el, 

where the terms in the union are pairwise disjoint, so that,  for at least one index 

m in [1, M], we have 

14^~ml < MI4^c~I _ 5.77s/L(s + 4)/LJ < 5.8L. 

Such a set Bm satisfies the conditions stated in Proposition 2. | 

3. Three statements  in additive number theory 

In this section, we give some general results in additive number theory. The first 

one is the easiest case of the general inverse result which can be found in [4] 

(Thin. 1.9 p. 11); its original proof appeared in [3]. 

PROPOSITION 3.1: Let S be a finite set of integers satisfying 12S] _< 2 [ S [ -  1 +b,  

where b _< [$[ - 3. Then $ is included in an arithmetic progression of length 

ISl + b. 

The next two results are fairly elementary ones and are just stated and proved 

here for convenience. The reader will meet no difficulty in adjusting Proposition 

3.2 to the case when the length for the arithmetic progression containing $ is 

only known to be _< ~[$[ for some ~ < 2. 
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PROPOSITION 3.2: Let S be a set of integers such that S is included in an 

arithmetic progression of length <_ 1.94[S[. For any h >_ 2, the set hS contains 

an arithmetic progression of length 0.01hS with the same difference as the first 

o n e .  

Proo~ Let d be the difference of the arithmetic progression that  contains S, 

and write $ = {Sl < . . .  < ss}, and 

{ s 2 - s l  s s - s l }  
T : =  O, ~ , . . . ,  -~ = { t l < ' " < t s } .  

The set T contains S integers and is included in the interval [0, 1.94S]. For 

any z E [1.94S, 2S - 2], the sets 7- and z - 7" are in [0, 2S - 2], and since each of 

them has S elements, the pigeon-hole principle implies that they have a common 

point, so that  z E 27", and so [1.94S, 2 S -  2] is contained in 27". 

Since 27" contains an interval of length 0.06S - 1, then for any h _> 2, the set 

hT" contains an interval of length L~J(0.06s- 1) > 0.01hS. 

We easily transfer this result from 7" to 3, getting a proof of Proposition 3.2. 
| 

PROPOSITION 3.3: Let B be a set of integers; we have 

12•1 < 31BI + 14^BI. 

Proo~ We may assume that  IBI is at least 2, and denote by bl and b2 the two 

smallest elements in B. Let us write B ~ := B\{bl ,b2} .  We have 

2B C ({bl} + B) U ({b2} + B) u {2b/b e B} U 2^B '. 

The map which associates to each element x in 2AB ~ the element bl + b2 -t- x is a 

one to one correspondance from 2^B ' to 4^B, so that  ] 2^B ' I<_1 4^B I- We thus 

have 12U I < 31B] + I 2 ^ B  ' I< 31BI + I 4^U I. . 

4. On the  structure of  B when  4^B is smal l  

This section is devoted to the proof of the structural result Theorem 3. We give 

a proof in the case ~ = 5.8, which is enough for our purpose, and will permit us 

to specify almost all the involved constants. The reader will have no difficulty in 

deriving a proof of the general case along the same lines. More specifically, we 

show the following special case of Theorem 3. 
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PROPOSITION 4: Let  L be sufticiently large, and B be a set  of L integers such 

that 14ABI < 5.8L. Then the set  2 [L10-6 jAB contains at least 10-SlBI 2 te rms  in 

an arithmetic progression. 

Proo~ Let us consider a set B with L elements  such t ha t  14ABI is at  most  5.81BI; 

let us write 

Y = { b l , . . . , b L } ,  

and let us define 

u := LL/1000J and v := [L/1000000J x 2. 

We let S consist of those elements  in 2B which are representable  as the sum of 

two elements  f rom B in a t  least (v + 1) ways. We have the following three facts: 

(i) the number  of pairs (b~, bj) wi th  1 _< i < j _< i + u is a t  least (L - u)u, 

(ii) the number  of pairs  (bi,bj) which occur  in the  representa t ion  of some 

element  in 2B which is not  in S, is at  most  I 2B I v, 

(iii) every element  in 2B is representable  as a sum bi + bj with 1 < i < j < i + u 

in at  mos t  u/2  ways. 

From those three facts, we readily deduce the lower bound  

Isl >_ (L - u).u - 12BIv 
u/2 

By Propos i t ion  3.3 and  the  upper  bound  14^BI _> 5.81B 1, we know t h a t  J2B 1 _< 

8.81B[; combined with the definition of u and v, this leads to 

ISI > 1.98L. 

Let  us now consider the set 2S. Since v is a t  least 1 (as soon as L is large 

enough),  we have 2S C 4AB, so t ha t  

12SI _< 5.8L. 

Combining  the  two previous inequalities, we get 

12sI _ 5.8L <_ 2 x 1.98L - 1 + 1.85L _ 2[S I - 1 + 1.85L. 

Since 1.85L _< 1.98L - 3 _< IS[ - 3, we m a y  apply  Propos i t ion  3.1, and so we 

know tha t  S is included in an a r i thmet ic  progression of length ISI + 1.85L < 

ISI(1 + 1.85/1.98) _< 1.941SI. 
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We now appeal to Proposition 3.2: for any h > 2, the set hS  contains 0.01his I 

terms in an arithmetic progression, and we apply this result for h := v/2 ,  showing 

that  the set ~S contains an arithmetic progression with cardinality at least 

L 
0.01.[$[ _> 1980000 

- -  x 0.01 x 1.98L -- lO-SL 2. 

To conclude the proof, it remains to show that  an element in ~S belongs to 

vA/3. Let indeed x be in 7S, we can write 

x = s l + . . .  + sv/2; 

we now may write Sl as a sum of two distinct elements from/3, then s2 as a sum 

of two distinct elements of/3, each of which is distinct from those used in s l , . .  �9 

and so on, by the definition of S. Our conclusion is that  2 [L.10-6J^B contains 

an ari thmetic progression with at least L2.10 - s  terms, as stated in Proposition 

4. | 

5. T h e  se t  .4 is e s s e n t i a l l y  c o n t a i n e d  in a s h o r t  a r i t h m e t i c  p r o g r e s s i o n  

This section is devoted to the proof of Theorem 2, which is stated in the 

introduction. 

Let L := 2[104N5/12j and t :-- 2[10-6LJ. By Proposition 2, we may find 

B C .4 with IBI = L and 14^BI _< 5.8[B I. By Proposition 4, the set tAB contains 

at least 10-SL 2 > 3N 5/6 terms in an arithmetic progression; let us call 5 the 

difference of this arithmetic progression. 

Our first step is to show that  the elements of 7) := fit \ / 3  are located in less 

than R := [N1/6j distinct residue classes modulo 5. Let us assume that  it is not 

true, and choose d l , . . . ,  dR, elements in 7:) which are pairwise incongruent mod 

~i. Let us now select n := s - t - 1 fixed elements a l , . . . ,  a,~ in 79 \ ( d l , . . . ,  dR}. 

All the sets tA l3+(al+ .. .+a,~}+(d~} (1 < i < R) are included in SAfi and their 

union contains at  least RIO-SL 2 distinct elements. This would lead to IsAfil >_ 

R10-SL 2 _> 2N in contradiction to ]sAfil < 1.44s(Ifi I - s) < 1.45[fil2/4 < 2N. 

Let (gi}l<i<s  be the set of residues modulo 5 such that  Z) contains at least 

R distinct elements congruent to gi modulo 5, and let us denote by s the set of 

all the elements in 79 which are congruent to some of the gi modulo 5 (i.e. s is 

the union of the "rich" classes of 7:) modulo df). The set s "- 79 has cardinality 

at most R 2, and s has cardinality larger than Ifil - 1131 - I s \ 791 > N1/2. Since 
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S < R, this implies that S > 1 and that there exists at least one gi, let us call it 

gl, such that  g contains at least R 2 elements congruent to gl modulo ~f. 

Our next step is to prove that for any i with 2 < i < S, the element gl - gl (in 

Z/~Z) has order less than R. The proof is quite similar to that  used in bounding 

the number of classes represented by 7) modulo 6. We assume that  the order of 

gl - g ~  (modulo 5) is at least R and choose e l ( I ) , . . . ,  e l (R)  distinct in s and 

congruent to gl modulo 5, as well as e / (1 ) , . . . ,  e~(R) distinct in s and congruent 

to gi modulo 5. By our assumption on the order of gl - g~, the elements 

e l ( l )  + " -  + el(r)  + ei(r + 1) + . . .  + ei(R) for 0 < r < R -  1 

are pairwise incongruent modulo 6, since 

e1(1) + . . .  + el(r) + e (r + 1) + . . .  + ei(R) 

is congruent to Rgi + r(gl - gi) modulo 6. Thus the cardinality of tAB + 

R^{e l (1 ) , . . .  , e l (R) ,  e i (1 ) , . . . ,  ei(R)} is at least R.10-SL 2 > 2N; as previously, 

by choosing suitable elements in ~4, we may deduce from this last inequality that  

Is^AI is larger than 2N, a contradiction; the order of gl - gi is thus less than R. 

Let us now select R 2 elements in s say e l ( I ) , . . . ,  e l (R 2) which are congruent 

to gl modulo 5, and for each i with 2 < i < S, let us select R elements in s say 

e i (1 ) , . . . ,  ei(R),  which are congruent to g~ modulo 5. This choice is possible by 

the definition of C and gl. Let us call R the set of all those (ej(i)) .  

Let G be the subgroup of Z/6Z,  generated by (gl - g2 , . . . ,  gl - gs); it is an 

abelian group generated by elements of order at most R, so that any element in G 

may be written as  n l ( g l  - g2) + " "  + ns(g l  -- gs) with ni _< R. This implies that  

the integers e l ( l )  + . . .  + el(r1) + e2(1) + . . .  -}- e2(r2) + ' . "  + es(1) + . . .  + es ( r s )  

represent all the elements of ~, when ( r l , . . . , r s )  run over the sets of integers 

satisfying: 

rl  + . . .  + rs  = R 2 and 0 _< ri <_ R for 2 < i < S. 

We summarize the situation, and let ~" := B U (g \ 7)) u T~ and d := 6/IG I. 

We have the following properties: 

(~) I~'[ <_ 3 x 104N 5/12, 

(j3) t^~ - contains an arithmetic progression with at least 3N 5/6 terms and 

difference d, 
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(7) `4 \ ) r  is included in an ari thmetic progression modulo d. 

Our last step in the proof of Theorem 2 is to show that  a large part  of .4 \ )t- 

is in a short ari thmetic progression�9 Let T := [3N5/12j, and let us consider the 

T smallest elements of .4 \ ~- (let us call them al < �9 �9 �9 < aT) and the T largest 
! 

(which we call a I < . . .  < a~). We consider the integers 

bl -~ al  T " " T aT,  

b2 = al  + - . .  + a T - 1  § arT, 

I ! I 
bT+l = al  + ' ' ' + a T _  1 + a T �9 

If we denote by Ad the difference a t - aT,  all the integers bl < b2 < .-- < bT 
are in the same class modulo d and the difference between any two of them 

is at least Ad. This implies that  tAgg + T A { a l , . . .  , a T ,  a~l , . . .  ,arT} contains at 

least T min(A, 3N 5/6) elements. By our now familiar argument,  this implies that  

T m i n ( A , 3 N  5/6) ~ tsAA[ ~ 2 N ,  so that  A _< N 7/12. We finally define d as 

previously, C as B u s \ Z) U T~ U { a l , . . . ,  aT, all,..., a,).}; this set C satisfies the 

properties of Theorem 2. | 

6. P r o o f  o f  T h e o r e m  1 

Let A be an admissible subset included in [1, N]. If card .4 is less than 2 N  1/2 + 

106N 5/12 or if N is small, then Theorem 1 trivially holds. We may thus assume 

that  N is large enough and that  card .4 is larger than 2 N  1/2 + 106N 5/12, so 

that  Theorem 2 may be applied; we consider C, d and t given by this result, 

and we denote by u, u + d , . . . ,  u + ld the arithmetic progression included in t ^C,  

with I > 2N 5/6. We choose an integer S larger than 2 N  1/2 § 1, such that  S is 

congruent to d mod 2 and card (.4 \ C) > S; we finally let U = ( S  + d ) /2 .  

Our aim is to show that  t A c  + (U - d)A(.4 \ C) and t ^ C  + U A ( A  \ C) have 

one element in common, which contradicts the fact that  `4 is admissible; this 

contradiction will then imply that  card A > 2 N  1/2 + 106N 5/12 cannot hold, and 

Theorem 1 will be proven. 

Let us write .4 \ C = {al < a2 < . . .} and consider the elements: 

al + " "  + a u - 1  + a u ,  

al  + " �9 + a u - 1  + au+l ,  
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. o  o 

al + "'" + au-1  + as ,  

al + "'" + av + as,  

a s _ u + l  �9 �9 .. + as.  

All those elements are distinct, congruent modulo d, and the difference between 

two consecutive elements is at most dN 7/12. By adding t^C we see that  t^C + 

U A ( A  \ C) contains all the elements which are congruent to Ual + u mod d, and 

lie in the interval ,7 := [u + al + . "  + aw, u + as -u+1  + "'" + as]. The integer 

u + av+l  + "'" + as  belongs to tAC + (U - d ) A ( A \ C ) ;  so it is congruent to 

(U - d)al + u modulo d, and so it is congruent to Ual + u modulo d. In order 

to get the desired contradiction, it is enough to prove that  it belongs to ,7, for 

which it is enough to prove that  it is larger than u + al + . "  + av .  We have thus 

reduced the problem to showing that  

(,) al + . "  + av <_ au+l + "'" + as.  

Let M d  be a multiple of d which is at least au and less than au+l.  We have 

as well as 

al + " ' + a u  <_ ( M - U  + l ) d + ' " +  Md,  

au+l + " "  + as  >_ M d + . . .  + ( M  + S -  U -  1)d. 

Thus, condition (*) holds as soon as one has 

M ( M  + I ) - ( M - U ) ( M - U  + I) <_ ( M  + S - U ) ( M  + S - U - 1 ) -  M ( M - 1 ) .  

This last inequality is equivalent to 

4dM + l < d 2 + ( S - 1 )  2 , 

which, in turns, holds because we have 

S > 2v/-N + 1 and d M  <_ au+l <_ N;  

we have thus proven that  inequality ( , )  holds and, as we mentioned, this 

concludes the proof of Theorem 1. | 
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